CHOICE BASED CREDIT SYSTEM - LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK PG & RESEARCH DEPARTMENT OF PHYSICS

M.Sc Physics: Those who have joined in the Academic year 2023-24 onwards

Part		Course Cod							
	1	SEMESTER I		L	L				
	CC – 1	Mathematical Physics	232104101	4	6				
	CC – 2	Classical Mechanics and Relativity	232104102	4	6				
•	CC – 3	Linear and Digital ICs and Applications	232104103	4	6				
A	EC I- P	Practical - I	232104104	4	6				
	EC –II (Generic/DS)	Energy Physics	232104105	2	2				
	SEC I	Material Science	232104106	2	2				
В	AECC 1 – Soft Skill	Medical Physics	232104107	2	2				
	Total			22	30				
		SEMESTER II							
	CC-4	Statistical Mechanics	232104201	4	6				
	CC – 5	Quantum Mechanics – I	232104202	4	6				
Α	CC – 6	Practical - II	232104203	4	6				
	EC - III	Nonlinear Dynamics	232104204	3	4				
	EC - IV	Characterization of Materials	232104205	3	4				
в	SEC – II	Advanced Optics	232104206	2	2				
D	AECC 2	Thin Films	232104207	2	2				
	*Internship	Internship / Industrial Activity		-	-				
				22	30				
	~~ -	SEMESTER III			_				
	<u>CC - 7</u>	Quantum Mechanics - II	232104301	4	5				
-	<u>CC – 8</u>	Condensed Matter Physics	232104302	4	6				
	<u>CC - 9</u>	Electromagnetic Theory	232104303	4	5				
A	Core P		222104204	2	-				
	Core Industry	Practical – III	232104304	3	6				
	Module		222104205	2	4				
	EC - V	Advanced Spectroscopy	232104305	3	4				
D	SEC – III	8051	232104306	2	2				
Б	AECC – 3	Crystal Growth Techniques	232104307	2	2				
	Internship	Internship / Industrial Activity	232104308	2	-				
				24	30				
		SEMESTER IV							
	<u>CC – 10</u>	Nuclear and Particle Physics	232104401	4	6				
	CC – 11	Spectroscopy	232104402	4	5				
А	CC - 12	Numerical Methods and Computer Programming	232104403	4	5				
	EC VI – P	Practical - IV	232104404	3	6				
	$\overline{CC-13}$	Project with Viva voce	232104405	3	4				
	SEC – IV	Physics of Nanoscience and Technology	232104406	2	2				
B	AECC-4	Aptitude, Reasoning, Comprehension and Numerical Ability	232104407	2	2				
С	EA	Extension Activity	232104408	1	_				
	Total			23	30				

* Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

Title o	of the Course	QUANTUM MECHANICS - II								
Part		Α								
Catao	Coro 7	Year	II	Credita	4	C	ourse		232104301	
Categ	ory Cole /	Semester	r III	Creans	4	C	ode	4		
Instructional Hours		Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
PC	cen	5	-		5	25	75		100	
			Pre-F	Requisites						
Knowle	edge of postulates	of Quant	um mech	anics, prop	perties of	of Her	rmitian	ope	rators, ladder	
operato	rs, degeneracy, angu	lar momer	ntum techr	niques and c	commuta	tion ru	ıles			
			Learnin	ng Objectiv	ves					
×.	Formal development	t of the the	eory and the	he propertie	es of ang	gular m	nomenta,	bot	h orbital and	
	spin									
× '	To familiarize the st	udents to	the crucial	l concepts o	of scatter	ring the	eory suc	h as	partial wave	
1	analysis and Barn ap	proximati	on.	-		-	-		-	
× '	Time-dependent Per with the electromagr	turbation retic field	theory and	l its applica	ation to	study o	of intera	ctio	n of an atom	

To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts

∠ To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

UNIT	Details	No. of Periods for the Unit
-	SCATTERING THEORY	
	Scattering amplitude - Cross sections - Born approximation and its	
т	validity - Scattering by a screened coulomb potential - Yukawa	15
1	potential – Partial wave analysis – Scattering length and Effective	15
	range theory for s wave - Optical theorem - Transformation from	
	centre of mass to laboratory frame.	
Π	PERTURBATION THEORY	
	Time dependent perturbation theory – Constant and harmonic	
	perturbations - Fermi Golden rule - Transition probability Einstein's	15
	A and B Coefficients – Adiabatic approximation – Sudden	15
	approximation – Semi – classical treatment of an atom with	
	electromagnetic radiation – Selection rules for dipole radiation	
	RELATISTIC QUANTUM MECHANICS	
	Klein – Gordon Equation – Charge And Current Densities – Dirac	
III	Matrices – Dirac Equation – Plane Wave Solutions – Interpretation Of	15
	Negative Energy States – Antiparticles – Spin of Electron – Magnetic	
	Moment Of An Electron Due To Spin	
	DIRAC EQUATION	
	Covariant form of Dirac Equation – Properties of the gamma matrices	
IV	- Traces - Relativistic invariance of Dirac equation - Probability	15
	Density – Current four vector – Bilinear covariant – Feynman's theory	
	of positron (Elementary ideas only without propagation formalism)	
	CLASSICAL FIELDS AND SECOND QUANTIZATION	
	Classical fields – Euler Lagrange equation – Hamiltonian formulation	
V	– Noether's theorem – Quantization of real and complex scalar fields	15
	- Creation, Annihilation and Number operators $-$ Fock states $-$	
	Second Quantization of K-G field.	

Course Outcomes								
Course Outcomes	On completion of this course, students will;							
CO1	Familiarize the concept of scattering theory such as partial							
	wave analysis and Born approximation							
CO2	Give a firm grounding in relativistic quantum mechanics, with emphasis on							
	Dirac equation and related concepts							
	Discuss the relativistic quantum mechanical equations namely, Klein-Gordon and							
CO3	Dirac equations and the phenomena accounted by them like electron spin and							
	magnetic moment							
604	Introduce the concept of covariance and the use of Feynman graphs for depicting							
C04	different interactions							
CO5	Demonstrate an understanding of field quantization and the explanation of the							
005	scattering matrix.							

	TEXT BOOKS									
1.	P M	M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics,2nd Edition, Tata IcGraw-Hill, New Delhi, 2010.								
2.	G.	Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India, NewDelhi,2009								
3.	L K	. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition, McGraw-Hill ogakusha, Tokyo, 1968								
4.	V 20	. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New Delhi, 005.								
5.	Ν	ouredine Zettili, Quantum mechanics concepts and applications, 2nd Edition, Wiley, 2017								
	REFERENCE BOOKS									
1	I I	P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Edition, Oxford University Press, London, 1973								
2	B. K. Agarwal & Hari Prakash, Quantum Mechanics, 7th reprint, PHI Learning Pvt. Ltd., New Delhi, 2009.									
3	I F	Deep Chandra Joshi, Quantum Electrodynamics and Particle Physics,1 st edition,I.K.International Publishing house Pvt. Ltd., 2006								
4	C N	Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4 th Edition, Macmillan India, New Delhi.								
5	I	E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley and Sons, New York, 1970								
		WEB SOURCES								
	1.	https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture notes/MIT8_05F13_Chap_09.pdf								
	2.	http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf								
	3.	http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf								
	4.	https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-gk.pdf								
	5.	https://web.mit.edu/dikaiser/www/FdsAmSci.pdf								

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

Title of t	he Course	CONDE	NSED M	ATTER PH	IYSICS					
Category	Core - 7	Year Semester	r III	Credits	4	C C	ourse ode	2	32104302	
Instructi	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
		6	-		6	25	75		100	
	1 1 1	. 1	Learnin	g Objective	es	1:00		<u>cc</u>		
≥ To bo	bonding.									
æ To	Z To construct reciprocal space, understand the lattice dynamics and apply it									
spe	ecific heat.	a variou	theories	of alastr	one in	colida	and t	hair	impost in	
dis	tinguishing solid	ss various		oi electi	ons m	sonus	s allu t	nen	impact m	
e Ou	tline different typ	bes of mag	netic mate	erials and ex	xplain th	e unde	rlying pl	heno	omena.	
🗷 Eli	ucidation of conc	epts of su	perconduc	ctivity, the	underlyi	ng the	ories –	relat	te to current	
are	as of research.									
UNIT		No fc	•. of Periods or the Unit							
	CRYSTAL PHY	SICS								
	Types of lattices	- Miller	indices –	Symmetry	elemen	ts and	allowed	l		
	rotations - Simpl	l								
	diffraction - Bragg's law – Scattered Wave Amplitude - Reciproca									
Ι	Lattice (sc, bcc, fcc). Structure and properties of liquid crystals								18	
	Diffraction Conditions - Laue equations - Brillouin zone - Structure									
	factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general									
	ideas)									
	LATTICE DVN									
	Lattice with two	atoms per	primitive	cell - First	Brilloui	n zone	- Grour	,		
п	and phase veloc	cities - Q	uantizatio	n of lattice	e vibrati	ions -	Phonor	1	18	
	momentum - Ine	;								
	heat capacity - T									
	THEORY OF N	IETALS A	AND SEM	IICONDU	CTORS					
	Free electron ga	as in three	e dimensi	ons - Elec	tronic h	neat ca	pacity -			
	Wiedemann-Fran	nz law - B	and theor	y of metals	and set	micono	luctors -			
III	Bloch theorem -	Kronig-F	enney mo	odel - Sem	iconduc	tors -	Intrinsic	;	18	
	carrier concentra	tion – Ten	nperature	Dependenc	e - Mob	ility -	Impurity	7		
	conductivity –	Impurity s	states - F	fall effect	- Ferm	i surfa	ices and			
	CONSTRUCTION.									
	Diamagnetism -	Ouantum	theory of	naramagne	tism - R	are ea	rth ion -			
	Hund's rule - O	uenching	of orbita	l angular r	nomentu	une eu um - (Duantum			
	theory of ferromagnetism - Curie point - Exchange integral -									
IV	Heisenberg's interpretation of Weiss field - Ferromagnetic domains								18	
	Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation									
	of magnons - C	urie tempo	erature an	d susceptib	oility of	ferrim	agnets -			
	Theory of antifer	omagnetis	m - Neel t	emperature	•					

	SUPERCONDUCTIVITY								
	Emerimental factor Occurrence Effect of magnetic fields Meissner								
	Experimental facts: Occurrence - Effect of magnetic fields - Meissner								
	ffect – Critical field – Critical current - Entropy and heat capacity -								
	Energy gap - Microwave and infrared properties - Type I and II								
v	Superconductors.	18							
·	Theoretical Explanation: Thermodynamics of super conducting	10							
	transition - London equation - Coherence length – Isotope effect -								
	Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – Single								
	particle tunneling - Josephson tunneling - DC and AC Josephson effects								
- High temperature Superconductors – SOUIDS.									
	Course Outcomes								
C									
Course	On completion of this course, students will;								
Outcom	S	11 1 1							
CO1	Student will be able to list out the crystal systems, symmetries	allowed in a							
	system and also the diffraction techniques to find the crystal structu	re							
CO2	Students will be able to visualize the idea of reciprocal spaces, B	rillouin Zone							
	and their extension to band theory of solids.								
CO3	Student will be able to comprehend the heat conduction in solids								
COA	Student will be able to generalize the electronic nature of solid	ls from band							
004	theories.								
COF	Student can compare and contrast the various types of ma	gnetism and							
	conceptualize the idea of superconductivity.								

Text Books	(Latest Editions)
-------------------	-------------------

1.	C. Kittel,	1996,	Introduction t	o Solid	State	Physics,	7^{th}	¹ Edition,	Wiley,	New	York
----	------------	-------	----------------	---------	-------	----------	----------	-----------------------	--------	-----	------

- 2. Rita John, Solid State Physics, Tata Mc-Graw Hill Publication
- A. J. Dekker, *Solid State Physics*, Macmillan India, New Delhi.
 M. Ali Omar, 1974, *Elementary Solid State Physics Principles and Applications*, Addison
- Wesley
- 5. H. P. Myers, 1998, *Introductory Solid State Physics*, 2nd Edition, Viva Book, New Delhi.

References Books

(Latest editions, and the style as given below must be strictly adhered to)

- 1. J. S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia.
- 2. H. M. Rosenburg, 1993, *The Solid State*, 3rd Edition, Oxford University Press, Oxford
- 3. J. M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London.
- 4. C. Ross-Innes and E. H. Rhoderick, 1976, *Introduction to Superconductivity*, Pergamon, Oxford
- 5. J. P. Srivastava, 2001, *Elements of Solid State Physics*, Prentice-Hall of India, New Delhi.

WEB SOURCES

http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html

http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html

https://www.britannica.com/science/crystal

https://www.nationalgeographic.org/encyclopedia/magnetism/

https://www.brainkart.com/article/Super-Conductors_6824/

MAPPING WITH PROGRAM OUTCOMES:

	/	1			()		()			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

Title of the	Course	ELECTRO	MAGNE	TIC THEORY	Y					
Catagony	Coro 0	Year	II	Credita	4	Course			2104202	
Category	Cole - 9	Semester III Credits 4	Code 2321		2104505					
Instructiona	al Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Exte	ernal	Total	
per week	oer week		-		5	25	7	'5	100	
Pre-Requisites										
Different	coordinate	systems, Laj	place's eq	quation, condu	cting &	non-co	nduct	ing m	edium, basic	
definitions in	magnetism,	propagation of	of electron	nagnetic waves	, plasma					
			Learı	ning Objective	S					
💉 To acc	quire knowle	dge about bo	oundary co	onditions betwee	en two n	nedia and	the te	echniqu	e of method	
of sep	aration of va	riables								
🗷 To un	derstand Bio	t – Savart's la	aw and Ar	npere's circuita	ıl law					

- To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- Z To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves

 \swarrow To grasp the concept of plasma as the fourth state of matter

UNIT	Details	No. of Periods
		for the Unit
1	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.	15
II	Magnetostatics:	
	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.	15
III	Maxwell's Equations:	
	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.	15
IV	Electromagnetic Waves:	
	Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole	15
V	Magnetohydrodynamics:	
	The Boltzmann Equation - Simplified magnetohydrodynamic equations -	
	Electron plasma oscillations - The Debye shielding problem - Plasma	15
	continement in a magnetic field - Magnetohydrodynamic waves - Alfven waves and magnetosonic waves	
	waves and magnetosome waves.	

D.J.Griffiths,2002, Introduction to1New Delhi.	<i>Electrodynamics</i> , 3 rd Edition, Prentice-Hall of India,								
² J. R. Reitz, F. J. Milford and R. V 3 rd edition, Narosa Publishing Hou	V. Christy, 1986, <i>Foundations of Electromagnetic Theory</i> , se, New Delhi								
3 J. D. Jackson, 1975, <i>Classical Elec</i>	etrodynamics, Wiley Eastern Ltd. New Delhi								
4 J. A. Bittencourt, 1988, <i>Fundamen</i>	tals of Plasma Physics, Pergamon Press, Oxford.								
5 Gupta, Kumar and Singh, Electrod	ynamics, S. Chand & Co., New Delhi								
REFERENCE BOOKS									
W. Panofsky and M. Phillips, 190 London.	52, Classical Electricity and Magnetism, Addison Wesley,								
2J. D. Kraus and D. A. Fleisch, 19McGraw-Hill, New York.	99, Electromagnetics with Applications, 5 th Edition, WCB								
3 B. Chakraborty, 2002, Principles of	Electrodynamics, Books and Allied, Kolkata.								
4 P. Feynman, R. B. Leighton and M Narosa Publishing House, New Del	1. Sands, 1998, <i>The Feynman Lectures on Physics</i> , Vols. 2, hi.								
5 Andrew Zangwill, 2013, Modern El	ectrodynamics, Cambridge University Press, USA.								
	WEB SOURCES								
1 http://www.plasma.uu.se/CED/Bool	x/index.html								
2 http://www.thphys.nuim.ie/Notes/el	ectromag/frame_notes.html								
3 http://www.thphys.nuim.ie/Notes/er	n_topics/em_topics.html								
4 http://dmoz.org/Science/Physics/Ele	ctromagnetism/Courses_and_Tutorials/								
5 https://www.cliffsnotes.com/study-g	uides/physics/electricity-and-magnetism/electrostatics								

At the end of the course the student will be able to:

At the	and of the course the student will be able to.
CO1	Solve the differential equations using Laplace equation and to find solutions for boundary
COI	value problems
CO_{2}	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction &
	magnetic vector potential for various physical problems
001	Apply Maxwell's equations to describe how electromagnetic field behaves in different
COS	media
	Apply the concept of propagation of EM waves through wave guides in optical fiber
CO4	communications and also in radar installations, calculate the transmission and reflection
	coefficients of electromagnetic waves
CO5	Investigate the interaction of ionized gases with self-consistent electric and magnetic fields

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3

CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Title of tl	e Course	PRACTICA	L – III									
		Core Indust	ry Module									
Catagor	Core	Year	II	Credita	2	C	ourse	222104204				
Category	Module -P	Semester	III	Creatts	3		ode	232104304				
Instruction per week	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	l Total				
•				6	6	25	75	100				
D : 1	1 1 1 1:00		Pre-R	equisites								
Basic kno	wledge in diffe	erential equatio	n and linea	r algebra er fundame	ntale							
Dusie kile	Learning Objectives											
The aim and objective of the course on Computational Practical is to familiarize the of M.Sc.												
stuc	lents with the	numerical met	thods used	in comput	ation ar	id pro	gramming	g using any high				
rev ≪ To	equip the comr	utational skill	AIN using vario	ous mathem	atical to	ols						
∠ To	apply the softw	are tools to ex	plore the co	oncepts of p	ohysical	scienc	ce.					
🖉 To	approach the re	eal time activiti	es using ph	nysics and r	nathema	tical f	ormulatio	ons				
			Cours	e Details								
	(Any Eight Experiments)											
1. L	1. Lagrange interpolation with Algorithm, Flow chart and output.											
2. N	ewton forward	l interpolation v	with Algori	thm, Flow	chart an	d outp	out.					
3. N	ewton backwa	rd interpolation	n with Algo	orithm, Flov	w chart a	and ou	tput.					
4. C	urve-fitting: Lo	east squares fit	ting with A	lgorithm, F	Flow cha	rt and	output.					
5. N	umerical integ	ration by the tr	apezoidal r	ule with A	lgorithm	, Flow	v chart and	d output.				
6. N	umerical integ	ration by Simp	son's rule	with Algori	thm, Flo	w cha	art and out	tput.				
7. N	umerical solut	ion of ordinary	first-order	differentia	l equatio	ons by	the Euler	method with				
A	lgorithm, Flow	v chart and out	put.									
8. N	umerical solut	ion of ordinary	first-order	differentia	l equatio	ons by	the Rung	e- Kutta method				
v	ith Algorithm,	Flow chart and	d output.									
9. F	inding Roots o	f a Polynomial	- Bisectior	n Method								
10. F	inding Roots o	f a Polynomial	- Newton]	Raphson M	ethod							
11. S	olution of Sim	ultaneous Linea	ar Equation	by Gauss	eliminat	ion m	ethod.					
12. S	olution of Ordi	inary Different	ial Equation	n by Euler								
13. F	unge Kutta Fo	urth Order Met	hod for sol	ving first o	rder Ord	linarv	Different	ial Equations				
14. N	ewton's cotes	formula		U I	-	5		•				
15. т	rapezoidal rule											
16 5	$\frac{1}{1000}$ impson's 1/3 m	ule										
17 8	impson's 3/8 m	ule										
		u10										
	Souccion and	atura mathad (2 noint and	3 point for	mula							
19.	Jaussian quadr			s point for	mula)							
20. C	iratte's root so	uare method fo	or solving a	algebraic eq	uation							

	TEXT BOOKS							
1	Numerical methods using Matlab – John Mathews & Kurtis Fink, Prentice Hall, New Jersey 2006							
2	Numerical methods in Science and Engineering - M.K. Venkataraman, National Publishing Co. Madras, 1996							
3	V. Rajaraman, 1993, Computer Oriented Numerical Methods, 3 rd Ed. (Prentice-Hall, New Delhi.							
4	M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for Scientific and Engineering Computation, 3 rd Ed. New Age International, New Delhi.							
5	S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New Delhi.							
REFERENCE BOOKS								
1	S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill).							
2	B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th Edition, Addison Wesley, Reading, MA.							
3	B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical Methods (Wiley, New York.							
4	S.S. Kuo, 1996, Numerical Methods and Computers, Addison - Wesley, London.							
5	V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI, New Delhi.							

At the end of the course the student will be able to:

CO1	Program with the C Program/ FORTRAN with the C or any other high level language								
CO2	Use various numerical methods in describing/solving physics problems.								
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific								
COS	problems.								
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.								
CO5	To apply various mathematical entities, facilitate to visualise any complicate tasks.								
K1 - Rer	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate								

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Title of the	e Course	ADVANCED SPECTROSCOPY									
Category	EC V	Year		II	Credita	2	(Course	, ,	222104205	
	EC - V	Semester		III	Creans	5	(Code		252104505	
Instructional Hours per week		Lecture	Tutorial		Lab Practice	Total	CIA	Extern	nal	Total	
		4		-		4	25 75			100	
			Lea	arning	g Objective	es					
Helps students understand and appreciate spectroscopy as a sufficiently broad field in which many sub disciplines exist.											
Make them appreciate each of these specific techniques with numerous implementations.											
🖉 To r	\ll To realize the progress in this field that is rapid resulting in improved instrument										

To realize the progress in this field that is rapid, resulting in improved instrument capabilities and an ever-widening range of applications.

Ze To apply group theory in spectroscopy to shed light on molecular symmetry and determine important physical parameters.

UNIT	Details	No. of Periods for the Unit					
I	GROUP THEORY Group axioms – subgroup, simple group, Abelian group, cyclic group, Order of a group, class- Lagrange's theorem statement and proof- Symmetry operations and symmetry elements - Application: construction Of group multiplication table (not character table) for groups of order 2,3, Cyclic group of order 4, non cyclic group of order 4	12					
II	MOLECULAR REPRESENTATION OF GROUP THEORY Reducible irreducible representations - Unitary representations – Schur's lemmas – Great orthogonality theorem - point group -Simple applications :Symmetry operations of water and ammonia – Construction of character table for C_{2v} (water) and C_{3v} (ammonia) molecules	12					
III	MOSSBAUER SPECTROSCOPY Basic idea of Mossbauer spectroscopy - Principle- Mossbauer effect- instrumentation-Recoilless emission and absorption- isomer shift –Effect of electric and magnetic fields–hyperfine interactions Applications: understanding molecular and electronic structures	12					
IV	LASER SPECTROSCOPY Nonlinear optical effects-Frequency Generation by Nonlinear optical Techniques-Sources for laser spectroscopy-LASER Induced Fluorescence-LASER Magnetic Resonance - LASER stark spectroscopy – Photo acoustic Spectroscopy – Doppler Free Two-photon spectroscopy – Opto Galvanic Spectroscopy	12					
V	X-RAY PHOTOELECTRON SPECTROSCOPY Principle – XPS spectra and its interpretation- ECSA-EDAX- other forms of XPS – chemical shift - Applications : - stoichiometric analysis- electronic structure – XPES techniques used in astronomy, glass industries, paints and in biological research	12					
COUR	SE OUTCOMES: At the end of the course, the student will be able to:						
CO 1	Comprehend set of operations associated with symmetry elements of mathematical theory while working with symmetry operations. Ap theory while working with symmetry operations. To use group the characterize molecules.	a molecule; app ply mathematic eory as a tool					
CO 2	Align with the recent advances in semiconductor laser technology c spectroscopic detection techniques.	ombined sensitiv					
CO 3	3 Understand principle behind Mossbauer spectroscopy and apply the concepts of iso						

shift and quadrupole splitting to analyse molecules.

CO 4	Assimilate this XPES quantitative technique and the instrumentation associated with this,
	as applied in understanding surface of materials.
CO 5	Employ IR and Raman spectroscopic data along with other data for structural
	Investigation of molecules. Analyze thermodynamic functions and other parameters to
	evolve molecular models.

	TEXT BOOKS					
1	William Kemp, 2019, Organic Spectroscopy (2 nd Edition) MacMillan, Indian Edition.					
2	C.N.Banwell and McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition,					
² Tata McGraw–Hill, New Delhi.						
2	D.N.Satyanarayana, 2001, Vibrational Spectroscopy and Applications,					
3	New Age International Publication.					
4	B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.					
5	G. Aruldhas Molecular structure and spectroscopy (2007) II edition					
	REFERENCE BOOKS					
1	Demtroder. W, Laser Spectroscopy: Basic concepts and					
1	Instrumentation, SpringerLink.					
2	B. P. Straughan and S. Walker, 1976, Spectroscopy Vol.I., Chapman and Hall, New York.					
3	J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi.					
4	David.L. Andrews, Introduction to Laser Spectroscopy, Springer, 2020					
5	Kalsi.P.S,2016,Spectroscopy of Organic Compounds (7thEdition) New Age International					
	Publishers					
	WEB SOURCES					
1	Fundamentals of Spectroscopy - Course (nptel.ac.in)					
2	http://mpbou.edu.in/slm/mscche1p4.pdf					
3	https://onlinecourses.nptel.ac.in/noc20_cy08/preview					
4	https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-XCWRu					
5	https://serc.carleton.edu/research_education/geochemsheets/techniques/mossbauer.html					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

Title of t Course	he	MICROPR	OCESSOR	R 8085 & M	ICROCO	NTROL	LER 805	51		
Categor	SEC -	Year	II	Crodite	2	Course	e Code	23210/306		
У	III	Semester	III	Creats	2			232104300		
Instructi Hours pe	onal er week	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	l Total		
		2	-		2	25	75	100		
			Lear	ning Object	tives		-			
To provide an understanding of the architecture and functioning of microproc										
and	l to the met	hods of inter	facing I/O c	levices and	memory to	o micropi	ocessor			
🗷 To	introduce 8	085A progra	mming and	l application	s and the	architectu	ire and in	struction sets		
of	microcontro	oller 8051	U	11						
UNITS			Cour	so dotoils				No. of Periods		
UNIIS			Cour	se uetalls				for the Unit		
	8085 PR(DGRAMMI	NG, PERI	PHERAL	DEVICE	S AND	THEIR			
_	INTERFA	CING		_				_		
I	Instruction	set - Addres	ssing mode	s - Program	ming tech	niques	Memory	6		
	mapped L	O scheme-	I/O mapp	ed I/O sch	ieme - N	lemory	and I/O			
	interfacing	<u>- Data transi</u>	A DDL LCA	TIONS						
		ment displa	AFFLICA	Interfac	ing of D	igital to	Analog			
п	converter	and Analog	to Digital	converter -	Stenner i	notor in	terface -	6		
	Measurem	ent of electri	cal quantiti	es –Voltage	and curre	nt) Meas	urement	0		
	of physical	l quantities (Femperatur	e an strain).						
	8051 MIC	ROCONTR	OLLER H	IARDWAR	E					
тт	Introductio	on – Features	of 8051 -	8051 Micro	controller	Hardwa	re: Pin-	6		
111	out 8051, 0	Central Proce	essing Unit	(CPU), inte	rnal RAM	, Internal	ROM,	0		
	Register se	et of 8051								
	8051 IN	STRUCTIO	N SET	AND AS	SEMBLY	LAN	GUAGE			
TT 7	PROGRA	MMING		. 1 1 1 1	1 .	· D	1			
IV	Logical in	structions: b	yte and bi	t level logi	cal operat	ions, Ro	tate and	6		
	swap oper	wap operations – Antimetic instructions: Flags, incrementing and ecrementing Δ ddition Subtraction Multiplication and division								
	uccientent	ing, Addition	i, Subtractio	Jii, wiutupite		uivisioli				
	INTERRU EXTERN	JPT PRO AL WORLI	GRAMMI)	NG AND	INTEF	RFACIN	G TO			
V	LED Inter	igital to	6							
*	Analog co	log converter and Analog to Digital converter - Stepper motor								
	interface -	Measureme	nt of electr	rical quantit	ies – Volt	tage and	current)			
	Measurement of physical quantities(Temperature an strain).									

	TEXT BOOKS						
1	A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009).						
2	A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009).						
Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 808							
3	Penram International Publishing (2013).						
4	B. Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai publications						
⁴ New Delhi (2016).							
5	5 V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd Edition S.Visvanatha						
5	Pvt, Ltd.						
	REFERENCE BOOKS						
1	Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc						
1	Graw Hill Publications (2008)						
2	Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051						
2	Microcontroller and Embedded Systems, Pearson Education (2008).						

2	Barry B.	Brey,	1995,	The	Intel	Microprocessors	8086/8088,	80186,	80286,	80386	and
3	80486, 3r	d Editio	on, Pre	ntice-	- Hall	of India, New Del	hi.				

4	J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software,
4	Hardware and Applications", Prentice-Hall of India, New Delhi.
5	A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software,
5	Hardware and Applications", Prentice-Hall of India, New Delhi.
	WEB SOURCES
1	https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architecture.html
2	http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/
3	https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/
4	http://www.circuitstoday.com/8051-microcontroller
5	https://www.elprocus.com/8051-assembly-language-programming/

At the end of the course, the student will be able to:

CO1	Gain knowledge of architecture and working of 8085 microprocessor.
CO2	Get knowledge of architecture and working of 8051 Microcontroller.
CO3	Be able to write simple assembly language programs for 8085A microprocessor.
CO4	Able to write simple assembly language programs for 8051 Microcontroller.
CO5	Understand the different applications of microprocessor and microcontroller.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

Title of the	Course		CR	YSTAL G	ROWTH 1	TECHN	IQUES		
Category	AECC 3	Year	tor	II	Credits	2	Course	Code	232104307
Instruction	al Hours per	Lectur	re	Tutorial	Lab Practice	Total	CIA	External	Total
week		2		-		2	25	75	100
	Learning Objectives								
🖉 . To :	acquire the know	owledge	on N	Nucleation	of crystal gi	rowth			
🖉 To u	nderstand the (Crystalliz	zatio	n Principle	s.				
🖉 To u	nderstand the S	Solution	Gro	wth method	ds.				
🗷 To st	udy various m	ethods o	of Ge	l growth te	chniques.				
∠ To st	udy various m	ethods o	of Me	elt and Vap	our growth	techniq	ues.		
UNITS	Course Details						No. of Periods for the Unit		
UNIT I:CRYSTAL GROWTH AND NUCLEATIONBasic Concepts of Crystal growth and Nucleation - Ambient phase equilibrium of finite phase - super saturation - equation of Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus - Classical theory of Nucleation - Homo and heterogeneous formation of nuclei - rate of Nucleation						6			
UNIT II:	UNIT II: CRYSTALLIZATION PRINCIPLES Crystallization Principles and Growth techniques - Solubility diagram - Super solubility - expression for super saturation - Metastable zone and introduction period - Miers TC diagram						6		
UNIT III:	UNIT III: Solution growth - Low and high temperatures solution growth - Slow cooling and solvent evaporation methods - Constant temperature bath as a Crystallizer					6			
UNIT IV:	UNIT IV: Gel growth techniques - Principle of Gel techniques - Various types of Gel - Structure and importance of Gel - Methods of Gel growth and advantages. 6						6		
	MELT AND V Melt technique Horizontal gr bhase growth -	APOUI s - Czoci adient fro Physical	R G hrals eeze l vap	ROWTH ski growth - Flux gro oour deposi	- Floating z wth - Hydro tion - Chem	zone - B otherma nical vap	ridgema l growth pour depo	n method - Vapour osition.	6

	TEXT BOOKS							
1	V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth and							
1	Epitaxy (2004) 2nd edition							
2	M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution"							
3	D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution"							
4	Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA.							
	REFERENCE BOOKS							
1	J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)							
2	P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes".							
2	H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons,							
3	New York							
4	B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.							

5 P. Santhana Raghavan and P. Ramasamy, "Crystal Growth Processes", KRU Publications.

	WEB SOURCES
1	https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrIO8kZl1D1Jp
2	https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7KeTLUuBu3WF
3	https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m
4	https://www.youtube.com/playlist?list=PLXHedI-xbyr8xIl_KQFs_R_oky3Yd1Emw
5	https://www.electrical4u.com/thermal-conductivity-of-metals/

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts and Nucleation of crystal growth
CO2	Understand the Crystallization Principles and Growth techniques
CO3	Study various methods of Crystal growth techniques
CO4	Understand the Gel growth methods.
CO5	Apply the techniques of melt and vapour growth method.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

Core Subject INTERNSHIP / INDUSTRIAL ACTIVITY Code: 232104308 SEMESTER III Credit 2

Preamble:

<i> To give Exposure to real world experience.

The Students will undergo minimum 7 days of summer internship/industrial activity training in subject related organization after their second semester for PG and Fourth semester for UG examinations (Summer Vacation).

The student will be allotted a faculty for guiding the internship/industrial activity. After the completion of the internship/industrial activity, he/she has to document the work, and submit the report along with the Certificate from the concern organization (2 copies – one to the Controller's Office, one to the Department Library)

The External viva voce examination will be conducted on or before last working day of the Third semester for PG and Fifth semester for UG.

	Internal	External	Total
	marks	marks	marks
Internship Report	15	50	65
Viva	10	25	35
Total	25	75	100

Evaluation of internship/industrial activity

Title of	f the Co	ourse	NUCLEA	R AND PA	ARTICLE I	PHYSIC	S		
Part			Α		1	1			
Cate	gory	Core 10	Year Semester	II IV	- Credits	4		ourse ode	232104401
Instruction per we	ctional] ek	Hours	Lecture	Tutorial	Lab Practice	Total	CIA	External	Total
	6 6 25 75								100
		4 14	- 4 - 41 - 1:66-	Learni	ng Objectiv	ves	-1	-1	
ビー ビー ビー ビー ビー ビー ビー ビー	ntroduc mparts a nuclear Provides Exposes	es student an in-dept reactions students students t	s to the diffe h knowledge and their prin with details o the Standa	e on the nu nciples of nuclear rd Model of	ls of the nuc clear force, decay with 1 of Elementar	experime relevant ry Partic	ents to theoric	study it and study	er I the types of on
UNITS				Course	Details				No. of Periods
	NUC	ΙΕΛΟΜ	ODEI S						for the Unit
I:	Liqui Bohr magic mome mode	d drop mo Wheeler c numbers ent – elec d – rotatio	odel – Weiza theory of f – angular n tric Quadrug nal and vibra	acker mass ission – s nomenta ar pole mom- ational ban	formula – hell model nd parity of ent - Bohr ds.	Isobaric – spin- ground s and Mot	mass orbit states telson	parabola – coupling – – magnetic collective	18
II:	NUCLEAR FORCES Introduction – properties of nuclear forces – ground state of deuteron – Neutron - proton scattering at low energies - Proton-proton scattering at low energies - Iow energies – spin dependence of nuclear forces - Exchange Forces -					18			
III:	NUC Kinds analy Comp	LEAR RI s of nuclea sis of sca pound nuclea	EACTIONS ar reactions - attering and clear reactions -	- Reaction reaction ons –Reso	kinematics cross sectio mances – 1	– Q-valu on – sca Breit W	ue – Pa attering figner	artial wave g length – one level	18
IV:	NUC Beta forbid decay nucle	LEAR DI decay – Fo dden decay – multipo ar isomeri	ECAY ermi theory y — neutring ole radiation sm – angula	of Beta de o physics - s – Angula r momentu	cay– mass c - Helicity - I ar Correlatio um and parit	of neutrin Parity vi on - inter y selection	no – a olation mal co on rule	llowed and n - Gamma nversion – es.	18
V:	Indicidar isomerism – angular momentum and parity selection rules. ELEMENTARY PARTICLES Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mann matrices– Gell Mann Okuba Mass formula-Quark 18					18			
				ТЕХ	T BOOKS				
1 D.	C. Taya	al – Nucle	ar Physics –	Himalaya	Publishing 1	House (2	2011)		
2 K.	S. Krar	ne – Introd	luctory Nucl	ear Physic	s – John Wi	ley & So	ons (20	08)	
3 R.	Roy an	d P. Nigar	n – Nuclear	Physics –	New Age Pu	ublishers	(1996	j)	
4 S.	B. Pate	l – Nucle	ar Physics –	- An introd	luction – N	ew Age	Intern	ational Pvt	Ltd Publishers
5 S. ed	Glassto ition (19	ne – Soure 968)	ce Book of A	Atomic Ene	ergy – Van I	Nostrand	Reinl	nold Inc.,U.S	S 3rd Revised
		,		REFERE	NCE BOO	KS			

1	L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973)
2	H. A. Enge – Introduction to Nuclear Physics – Addison Wesley, Publishing Company. Inc. Reading. New York, (1974).
3	Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002)
4	Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill Education (India) Private Limited; 1 edition (2001)
5	B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	REFERENCE BOOKS
1	L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973)
2	H. A. Enge – Introduction to Nuclear Physics – Addison Wesley, Publishing Company. Inc. Reading. New York, (1974).
3	Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002)
4	Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill Education (India) Private Limited; 1 edition (2001)
5	B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	WEB SOURCES
1	http://bubl.ac.uk/link/n/nuclearphysics.html
2	http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdf
3	http://www.scholarpedia.org/article/Nuclear_Forces
4	https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
5	http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.html
6	https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactivedecay.html

At the end of the course the student will be able to:

CO1	Gain knowledge about the concepts of helicity, parity, angular correlation and internal
	conversion.
CO2	Demonstrate knowledge of fundamental aspects of the structure of the nucleus,
	radioactive decay, nuclear reactions and the interaction of radiation and matter.
CO3	Use the different nuclear models to explain different nuclear phenomena and the
	concept of resonances through Briet-Weigner single level formula
CO4	Analyze data from nuclear scattering experiments to identify different properties of the
	nuclear force.
CO5	Summarize and identify allowed and forbidden nuclear reactions based on conservation
	laws of the elementary particles.

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8 PSO9 PSO10

CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

Title of the	e Course	SPECTR	OSCOPY	Y					
Part		Α							
Cotogory	Core 10	Year	II	Cradita	4	C	ourse	222104402	
Category	Cole IU	Semester	IV	Creans	4	C	ode	20	92104402
Instruction	nal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	al	Total
per week		5	-		5	25	75		100
			Pre-F	Requisites					
ی Thor mole	ough understan cules, their stru	ding of electure, bond	ctromagn nature, p	etic spectru hysical and	im, math	ematic al beha	cal abilit iviour	ies, k	nowledge of
			Learnin	ng Objectiv	es				
🗷 To c	omprehend the	theory behind	nd differe	ent spectros	copic me	ethods			
🗷 To k	now the workir	ng principle	s along v	with an ove	rview of	const	ruction of	of diff	ferent types
of sp	ectrometers inv	olved							
🔊 To e	xplore various a	pplications	of these	techniques	in R &D				
🗷 Appl	ly spectroscopio	technique	es for the	e qualitativ	e and q	uantita	tive ana	alysis	of various
chen	chemical compounds								
🔊 Unde	Understand this important analytical tool								
	I								
UNITS			Course	Datails				No	. of Periods

UNITS	Course Details	for the Unit
	MICROWAVE SPECTROSCOPY	
Ι	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass – rotational constant Effect of isotopic substitution - Non rigid rotator – centrifugal distortion constant-Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules.	15
	INFRA-RED SPECTROSCOPY	
Π	Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic oscillator – fundamentals, overtones and combinations- Diatomic Vibrating Rotator- P,R branch – P,Q,R branch- Fundamental modes of vibration of H_2O and CO_2 -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy.	15
	RAMAN SPECTROSCOPY	
III	Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line- S,R branch -Raman activity of H_2O and CO_2 . Mutual exclusion principle- determination of N_2O structure -Instrumentation technique and block diagram.	15
	RESONANCE SPECTROSCOPY	
IV	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction – interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy.	15
	Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation.	

	UV SPECTROSCOPY	
V	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic Molecule -Chromophores -Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer - Simple applications	15

	TEXT BOOKS						
1	C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th						
1	Edition, Tata McGraw–Hill, New Delhi.						
•	G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice-Hall of						
Z	India, New Delhi.						
•	D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications, New Age						
3	International Publication.						
4	B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.						
5	Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition),						
5	New Age International Publishers.						
	REFERENCE BOOKS						
1	J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi.						
2	J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of						
2	Chemistry, RSC, Cambridge.						
0	B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New						
3	York.						
4	K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.						
ч	Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, Springer						
5	Link.						
	WEB SOURCES						
1	https://www.youtube.com/watch?v=0iQhirTf2PI						
2	https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5						
3	https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee						
4	https://onlinecourses.nptel.ac.in/noc20_cy08/preview						
_	https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-						
5	XCWRu						

At the end of the course the student will be able to:

CO1	Understand fundamentals of rotational spectroscopy, view molecules as elastic rotors and interpret their behaviour. Able to quantify their nature and correlate them with their characteristic properties
	Understand the working principles of spectroscopic instruments and theoretical
	background of IR spectroscopy. Able to correlate mathematical process of Fourier
CO2	transformations with instrumentation. Able to interpret vibrational spectrum of
	small molecules.
CO3	Interpret structures and composition of molecules and use their knowledge of
005	Raman Spectroscopy as an important analytical tool
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative
0.04	estimation of a substances
	Learn the electronic transitions caused by absorption of radiation in the UV/Vis
CO5	region of the electromagnetic spectrum and be able to analyze a simple UV
	spectrum.

MAPPING WITH PROGRAM OUTCOMES:

3 2	0						105	104	FUI	
	3	3	3	3	3	2	3	3	3	CO1
3 2	3	3	3	3	3	3	2	2	2	CO2
3 3	3	3	3	3	3	3	3	2	3	CO3
3 3	3	3	3	3	3	3	3	2	3	CO4
3 3	3	3	3	3	3	3	3	3	3	CO5
333	3 3 3	2 2 3	3 3 3	CO3 CO4 CO5						

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Title of the	Course	NUMER PROGR	ICAL M	ETHODS A	AND CO	OMPU	TER			
Part		A		5						
Category	Core 12	Year Semester	II IV	Credits	4	C C	ourse ode	232	2104403	
Instruction	al Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Externa	ıl	Total	
рег week		5			5	25	75		100	
		1 1	Pre-l	Requisites	L		•			
Prior know	wledge on cor	nputer and	basic mat	hematics						
			Learnii	ng Objectiv	/es					
≤ Toma ≤ Toun	ake students to derstand the b	o understand basics of pro	d differen ogrammin	t numerical	approac	hes to	solve a p	robler	n.	
		Cou	rse Detai	ils				No. for	of Periods r the Unit	
	SOLUTION	IS OF EQU	JATION	S						
	Zeros or Ro	ots of an e	quation -	Non-linear	algebra	ic equa	ation and			
UNIT I:	transcendent	al equatio	ns - Ze	eros of po	olynomia	als —F	Roots of			
	polynomials,	, nonlinea	r algebra	ic equatio	ns and	transc	cendental		15	
	equations u	Ising Bise	ction an	Discution	-Raphso	n me	thods –			
	methods L	e of solut	10118 111 of Bisectic	Bisection	and Notice	ewton-	Raphson			
	I INFAR SY				ion-Kap		ictitous.			
	Simultaneous linear equations and their matrix representation									
UNIT II:	Inverse of a		15							
	inversion m	l its lin	nitations –	Gaussi	an eli	mination				
	method.									
	INTERPOL	ATION A	ND CUR	VE FITTI	NG					
UNIT III-	Interpolation									
	backward in		15							
	- Lagrange in									
	Fitting a poly	ynomial.								
	DIFFEREN	TIATION	, INTEG.	KATION A S	AND SO	LUTI	UN OF			
UNIT IV.	Numerical d									
	rule – Simpson's rule – Error estimates – Gauss-Legendre Gauss-								15	
	Laguerre – solution of ordinary differential equations – Fuler and									
	Runga Kutta	methods.	5		1					
	PROGRAM	IMING W	ITH C							
	Flow-charts	– Integer	and floati	ing point a	rithmetic	e expre	essions –			
	Built-in fund	ctions – E	xecutable	and non-e	xecutabl	le state	ements –			
	Subroutines	and fun	ctions –	- Program	s for	the f	following			
UNIT V:	computation	computational methods: (a) Zeros of polynomials by the bisection								
	method, (b)	Zeros of	polynon	nials/non-li	near equ	uations	by the			
	Newton-Rap	nson meth	od, (c)	Newton's	torward	and t	backward			
1	interpolation	, Lagrang	ge Inter	polation,	(a) Tra liffonont	apezoi	ual and			
l	Euler's meth	uics, (c) st od.			unici ciil	iai equ	ations by			

TEXT BOOKS

1

V. Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition. PHI, New Delhi

2	M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical Methods for Scientific and Engineering Computation, 3rd Edition, New Age Intl., New Delhi
3	S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi
4	F. Scheid, 1998, Numerical Analysis, 2nd Edition, Schaum's series, McGraw Hill, New York
5	W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992, Numerical Recipes in FORTRAN, 2nd Edition, Cambridge Univ. Press
	REFERENCE BOOKS
1	S. D. Conte and C. de Boor, 1981, Elementary Numerical analysis-an algorithmic approach, 3rd Edition, McGraw Hill,)
2	B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical analysis, 5th Edition, Addison-Wesley, MA.
3	B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied Numerical Methods, Wiley, New York.
4	S. S. Kuo, 1996, Numerical Methods and Computers, Addison-Wesley.
5	V. Rajaraman, Programming in FORTRAN / Programming in C, PHI, New Delhi
	WEB RESOURCES
1	https://www.scribd.com/doc/202122350/Computer-Oriented-Numerical-Methods-by-V-RajaRaman
2	https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespapers.aspx?ref erenceid=1682874
3	https://nptel.ac.in/course/122106033/
4	https://nptel.ac.in/course/103106074/
5	https://onlinecourses.nptel.ac.in/noc20_ma33/preview

At the end of the course the student will be able to:

	Recall the transcendental equations and analyze the different root finding methods.
CO1	Understand the basic concept involved in root finding procedure such as Newton Raphson
	and Bisection methods, their limitations.
CO2	Relate Simultaneous linear equations and their matrix representation Distinguish between
	various methods in solving simultaneous linear equations.
001	Understand, how interpolation will be used in various realms of physics and Apply to
003	some simple problems Analyze the newton forward and backward interpolation
~ ~ .	Recollect and apply methods in numerical differentiation and integration. Assess the
CO4	trapezoidal and Simson's method of numerical integration.
CO5	Understand the basics of C-programming and conditional statements.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3

CO5	3	2	3	1	1	2	3	2	2	3

Title of the	e Course	PRACT	ICAL IV					
Part		Α						
Catagory	FC = 6	Year	II	Cradita	2	Co	ourse	232104404
Category	EC - 0	Semester	r IV	Creuits	5	C	ode	232104404
Instructional per week	Hours	Lecture	Tutorial	Lab Practice	Total	CIA	External	Total
•				6	6	25	75	100
			Pre	Requisites				
Fundan	nentals of dig	gital princi	ples					
			Learn	ing Object	ives			
🗷 To und	lerstand the	theory a	and work	ing of M	icroproc	essor,	Microconti	coller and their
applicat	tions	-		-	-			
🖉 To use i	microprocess	or and Mi	crocontrol	ler in differ	ent appl	ication	S	
	•		Cou	rse Details	5			
			Pra	actical IV:				
		(AN	NY EIGH	T EXPERI	MENTS	5)		
1. 8-bit a	ddition and s	subtraction	, multiplic	cation and d	livision			
2. Sum c	of a set of N	V data (8-b	oit number	r), picking	up the s	smalles	and large	st number in an
array.	Sorting in as	cending an	nd descend	ling order				
3. Code of	conversion (8	8-bit numb	er): a) Bir	nary to BCI) b) BCI) to bir	nary	
4. Additi	on of multi b	oyte numbe	ers, Factor	ial	~			
5. Clock	program- 12	2/24 hours	-Real time	e application	n - Six	Digits	Hexa Decir	nal and Decimal
6 Interfa	ers acing of LEE) – Binary	v un/down	counter F	RCD un/	down	counter and	N/2N un/down
counte	er er	² Dinary	, up/uown	eounter, 1		uo wii	counter une	11, 21, up, do m
7. Interfa	acing of seve	n segment	display					
8. Interfa	acing of 8-b	oit R / 2R	ladder I	DAC (IC 7	741) - 1	Wave	form gener	ration – Square,
Rectar	ngular, Trian	gular, Saw	tooth and	Sine wave	s .			
9. DAC	0800/ DAC 1	048 interf	ace and w	ave form ge	eneration	n (Unip	olar/ Bipola	ar output)
10. ADC 0	cing of DC	æ stenner mo	tor - Cloc	kwise Ant	i-clockw	vise Ar	ngular move	ment and Winer
action	icing of DC 3	stepper mo	101 - Cloc	Kwise, <i>M</i> it		150, 71		ment and wiper
12. Interfa	acing of Tem	perature C	ontroller a	and Measur	ement			
13. Water	level detecto)r						
14. Elevat	or							
15. Traffic	c Light Conti	roller						
16. Key b	oard Interfac	e Mali	.1	- 1 D''-'-	- f 0 1 14			
17. Additi	on, Subtraction	ion, Multip 8 bit numb	plication a	na Division	OI 8-DI	numbe	ers.	
10. Sull 0 19 Avera	ge of N num	o-on nunn bers	0015					
20. Factor	ial of numbe	r						
21. Fibona	acci series of	N terms						
22. Multi	byte Addition	n / Subtrac	ction Sorti	ng				
23. g in as	scending and	descendin	g order –	Picking up	smallest	and la	rgest numbe	er
24. LED i	interface – E	Binary up/	down cou	nter, BCD	up/dowi	n coun	ter, Ring a	nd twisted ring
25 Interfe	er.	agmant di	anlava					
25. interfa	0800 / 1/08 i	eginent dis	spiays nd wave f	orm generat	ion			
20. DAC 0	interfacing	meriaet a		sin genera				
28. Steppe	er motor inter	rfacing						
29. Tempe	erature contro	oller and N	/leasureme	ents				
30. Traffic	c light contro	oller						

	TEXT BOOKS										
1	Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc										
	Graw Hill Publications (2008)										
2	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. Mckinlay,										
	The 8051 Microcontroller and Embedded Systems, Pearson Education (2008).										
2	V. Vijayendran, 2005, Fundamentals of Microprocessor-8085										
3	3rd Edition S. Visvanathan Pvt, Ltd.										
4	The 8085 Microprocessor, Architecture, Programming and Interfacing - K. Udaya										
4	Kumar, S. Uma Shankar, Pearson										
5	Fundamentals of Microprocessors and Microcontrollers - B. Ram, Dhanpat Rai										
5	Publications										
REFERENCE BOOKS											
1	W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing,										
1	Software, Hardware and Applications", Prentice-Hall of India, New Delhi.										
2	Microprocessor and Its Application - S. Malarvizhi, Anuradha Agencies Publications										
2	Microprocessor Architecture, Program And Its Application With 8085 - R.S. Gaonkar,										
3	New Age International (P) Ltd										
4	Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and										
4	80486, 3rd Edition, Prentice- Hall of India, New Delhi.										
5	J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software,										
3	Hardware and Applications", Prentice-Hall of India, New Delhi.										

At the end of the course, the student will be able to:

CO1	Develop the programming skills of Microprocessor
CO2	Appreciate the applications of Microprocessor programming
CO3	Understand the structure and working of 8085 microprocessor and apply it.
CO4	Acquire knowledge about the interfacing peripherals with 8085 microprocessor.
CO5	Acquire knowledge about the interfacing 8051 microcontroller with various peripherals.

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

Title of the Course		Project with Viva Voce									
Part		Α									
Cotogory	Core 13	Year	II	Credita	3	С	ourse	22	222104405		
Category		Semeste	r IV	Creatis	5	C	ode	23	02104405		
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	CIA	Externa	al	Total		
		4	-		4	25	75		100		

Students have to carry out project works under the guidance of the members of the Physics Department during III and IV semesters 3 hours per week. Each batch may be chosen in the fields of theoretical physics, spectroscopy, electronics, crystallography, thin films and Nanomaterials. Each batch will complete the project work in the month of March and submit their report.

It will be duly signed by the project guide and Head of the Department of Physics. The Viva on project will be conducted during the practical examination at the end of IV semester.

	Internal	External
Project	15	50
Viva	10	25
Total	25	75

Title of t	he Course	PHYSIC	CS OF NA	NOSCIEN	CE AN	D TE	CHNOL	OGY	ζ	
Part		B								
Categor y	SEC- IV	Year Semeste	II r IV	Credits	2	C C	'ourse 'ode	2	232104406	
Instructi per weel	onal Hours	Lecture	Tutorial	Lab Practice	Total	CIA	Extern	nal	Total	
L		2	-		2	25	75		100	
			Lear	ning Objec	tives	•				
	nysics of Na anipulation an provide the l	noscience d applications asic know	and Tec ons at nan ledge abou	chnology is ometer scal it nanoscier	s conce e. ace and t	rned echno	with the	e stu	udy, creation,	
∠ T	b learn the stru	ictures and	properties	s of nanoma	terials.	•••••••				
x T	acquire the k	nowledge	about synt	hesis metho	ods and o	harac	terizatior	n tech	niques and its	
at	plications.	ino wiedge	uoout sym	inesis meur		marae	conzultor		inques una res	
UNIT	5		Co	urse Details	8				No. of Periods for the Unit	
	FUNDA	MENTALS	5 0	F NA	NOSCI	ENCE	E A	ND		
	TECHN	OLOGY								
UNIT	Fundame	ntals of N	ANO – H	listorical Pe	erspective	e on l	Nanomat	erial		
	and Nano	otechnology	/ Classi	ification of	Nanoma	terials	– Metal	and	6	
	Semicono	luctor Nat	nomateria	ls - 2D,	ID, (D na	anostruct	ured		
	Surface e	- Qualitul ffects of na	II dols –	Quantum	wites –	Quan	itum we	18 -		
		TIES OF	NANOM	ATERIAL	S					
	Physical	properties	of Nanon	naterials: M	elting po	oints,	specific	heat		
	capacity,	and latti	ce consta	ant - Mec	hanical	behav	vior: Ela	astic		
UNIT I	I: propertie	s – strengt	h - ducti	lity - super	plastic l	behavi	ior - Op	tical	6	
	propertie	properties: - Surface Plasmon Resonance – Quantum size effects -								
	Electrical	properties								
	Magnetic	properties	s - super	para magn	ietism –	Dilut	ted magr	ietic		
	SYNTH	ESIS AND	<u>5).</u> FARRIC	ATION						
	Physical	vapour dep	osition - (Chemical va	apour de	positio	on - sol-g	el –		
UNIT I	II: Wet dep	osition tecl	nniques -	electrocher	nical de	positio	on metho	ód –	6	
	Plasma a	rching - El	ectrospini	ning method	d - ball 1	nilling	g techniq	ue -	U	
	pulsed la	aser depos	ition - I	Nanolithogr	aphy: p	hotoli	thograph	у —		
	Nanomar	ipulator.			FC					
	Powder X	CIERIZA Z-rav diffra	$\frac{110}{110} = X_{1}$	-ray photoel	LO lectron s	nectro	sconv (X	PS)		
UNIT I	\mathbf{V} : - UV-visi	ble spectro	scopy – F	Photolumine	escence -	Scan	ning elec	tron		
	microsco	py (SEM)	- Transm	nission elec	tron mi	crosco	py (TEN	<i>A</i>) -	6	
	Scanning	probe mic	roscopy (S	SPM) - Scar	nning tur	neling	g microsc	copy		
	(STM) –	Vibrating s	ample Ma	ignetometer						
	APPLIC	ATIONS ()F NAN(DMATERIA	ALS					
	Sensors:	Nanosenso	nsors	Nano biose	and ph	ysical Nano	Flectror	es -		
UNIT	V: Nanobots	ennear se	screens	- GMR r	ead/write	e head	ds - Ca	rbon		
01,111	Nanotube	Emitters	Emitters – Photocatalytic application: Air purification,							
	water put	rification -	Medicine:	Imaging o	f cancer	cells	– biolog	gical		
	tags - dr	ug delivery	- photod	ynamic the	rapy - E	energy	: fuel ce	lls -		
	rechargea	ble batterie	es - superc	apacitors -	photovol	ltaics.				
	1 toythool	of Nonosa	II bac cone	Nanotoch		Drada	on T T	'ata	McGrow Uill	
1	A LEXIDOOK (Dublishing Co	(2012)	ence and	manotechi	lology,	riade	ер I., I	ald	wcoraw-Hill	
	r uunsning Co	$\frac{2012}{Nanaciai}$		notocher-1		C1-	h T-1	n A 1	mod Name	
2	Principles of	INANOSCIEN	the and N_{1}	anotecnnolo	ogy, M.A	A. Sha	II, IOKee	r Af	imau, inarosa	
	rudiisning Ho	ouse Pvt Lto	ı., (2010).							

2	Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N.	
3	Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).	

4	Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press,
4	(2002).
	Nanotechnology and Nanoelectronics, D.P. Kothari,
5	V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi.
	(2018)
	REFERENCE BOOKS
1	Nanostructures and Nanomaterials – Huozhong Gao – Imperial College Press (2004).
2	Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA
2	Nano particles and Nano structured films; Preparation, Characterization and
3	Applications, J. H. Fendler John Wiley and Sons. (2007)
1	Textbook of Nanoscience and Nanotechnology, B. S. Murty, et al., Universities Press.
-	(2012)
5	The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr. Parag Diwan
3	and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics Pentagon Press, New Delhi.
	WEB SOURCES
1	www.its.caltec.edu/feyman/plenty.html
2	http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
3	http://www.understandingnano.com
4	http://www.nano.gov
5	http://www.nanotechnology.com

At the end of the course, the student will be able to:

CO1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.										
CO2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.										
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.										
CO4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.										
CO5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.										

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	3	3	3
C02	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

Title of t	he Course	APTITU NUMER	DE, REA	SONING, BILITY	CO	MPR	EHF	CNSION AN	D
Part		Α							
Categor	y AECC - 4	Year Semester	II r IV	Credits		2	2	Course Code	232104407
Instruct per weel	ional Hours	Lecture	Tutorial	Lab Practice	To	otal	l CIA External		l Total
•		2	-			2	25	75	100
			Lear	ning Objec	tive	S			
🗷 To	prepare students	for facing c	competitive	e examinatior	ns lil	ke UP	SC / 7	INPSC	
🗷 To	help students asp	oiring for C	SIR UGC N	NET / SET w	ith t	heir p	repara	ation for• Ge	neral Aptitude
pa	per.		~						
UNITS			Cours	e Details					No. of Periods for the Unit
	Mathematical	Reasonin	g and Ap	titude					
I	Types of rea relationships - Ratio, Proport Discounting, A	6							
	Logical Reaso	ning							
Π	Understanding the structure of arguments: argument forms, structure of categorical propositions, Mood and Figure, Formal and Informal fallacies, Uses of language, Connotations and denotations of terms, Classical square of opposition - Evaluating and distinguishing deductive and inductive reasoning – Analogies - Venn diagram: Simple and multiple use for establishing validity of arguments								6
	Data Interpre	tation							
III	Sources, acqu qualitative data chart, Table-c Interpretation	6							
IV	Reading Comprehension								6
_	Information a	nd Comm	unication	n Technolog	gy (]	ICT)			
V	ICT: General abbreviations and terminology - Basics of Internet, Intranet, E-mail, audio and video conferencing - Digital initiatives in higher education - ICT and Governance								6
	Ŭ		TE	ХТ ВООК	S				
Madaan 7th Editio	K V S, NTA U on, Pearson Edu	GC NET cation (20)	SET JR 23)	F 2023 – Te	each	ning a	and R	esearch Ap	titude (Paper – 1),
	, 				TE				
1. h 2. http	tps://byjusexamp ps://www.udemy.o	rep.com/ug com/course	c-net/ugc-r /ugc-net-pa	net-paper-1-p aper1-course	repa- bun	aratior dle/	n-strat	egy#toc-2	

At the end of the course, the student will be able to:

CO1	Analyze number series and letter series and predict sequences and solve problems					
	demonstrating numerical ability.					
CO2	Demonstrate deductive and inductive reasoning to arguments and identify fallacies in					
	arguments					
CO3	Interpret and analyze data represented in graphs / charts / tables.					
CO4	Comprehend passages and answer questions linking their existing knowledge with the given reading content.					
CO5	Understand the role of ICT and appreciate ICT initiatives in higher education.					
K1 - Ren	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	3	2	3	2
CO2	2	2	3	3	2	2
CO3	3	3	3	3	3	3
CO4	1	1	1	1	1	3
CO5	1	1	1	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	2	3
CO2	1	3	3	2	2
CO3	1	3	3	3	1
CO4	1	1	2	3	1
CO5	1	1	1	1	2

EXTENSION ACTIVITY

Course Code: 232104408 Credit: 1

The Students should undergo any of the following activities during the period of the program (Two Years) outside the college or in any other institutions. This Extension Activity will be evaluated through the certificate (minimum one) submitted by the students. As per the norms, students must carry out any one of the activity for obtaining the PG Degree. The concern Head of the Department will evaluate the students and submit the report to the Controller of Examinations at the end of the IV semester.

List of Extension Activity:

a) Conducting rally, awareness program etc.

- b) Seed ball, tree plantation, cleaning work etc.
- c) Blood donation, medical camp, organ donation etc.
- d) Assisting school children, tribal, and illiterate in learning.
- e) Giving assistance to orphanages and old age homes and patients.
- f) Awareness program on financial literacy, gender equality, women education etc.

Any other activities which are relevant to develop nearby localities.